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ABSTRACT
Artificial intelligence companies have had a massive boom
in the public market within the past 5 years, creating wide-
spread availability for querying LLMs over the internet. This
has impacted academic integrity within universities and in-
formation security in sensitive workplaces, thus we propose
an approach to identifying LLM versus non-LLM traffic flows
in encrypted enterprise networks. With data collected and
various models trained for ChatGPT, Gemini, and Claude
flow classification, we aim to provide network administrators
with a methodology for connecting timestamped browser
LLM usage with corresponding network users. Our models
had accuracies between 85%-97% with notably lower recall
rates ranging from 48%-75%. Future work and considerations
should be geared towards more extensive data collection,
fine-tuning classification models, and collaboration with net-
work administrators to create a more complete and practical
workflow.

1 INTRODUCTION
With the exponential increase in usage of AI tools, instruc-
tors must come up with creative ways to continue testing
their students properly. It is not difficult for a student to
use generative AI to complete an assignment in violation
of academic integrity guidelines. This cheating creates a
norm for academic dishonesty, and this paper is intended
to create a framework for LLM traffic detection that will
aid in dissuading such dishonesty. This will mainly be done
by accessing encrypted network packets securely and with-
out exposing sensitive information about the affected user.
Furthermore, research will specifically target sensitive work-
place and school networks, such as the encrypted enterprise
’eduroam’ network at the University of Virginia, and will
thus be tailored to packet streams following such architec-
ture standards. This research is for fingerprinting generalized
application flows rather than specific applications, and thus
we intend this work to extend to further efforts in classifying
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Figure 1: Classification of network traffic into flows
and flowlets, used for further insight into flow-level
behavior.

abstract traffic flows without compromising the privacy of
encrypted networks.

2 BACKGROUND
The initial proposal for this research was intended to use
entropy analysis to identify header meanings and any other
proprietary LLM packet attributes that could be used for
identification [10]. Because the research scope is constrained
to identification over encrypted networks, we decided that
entropy analysis would not be effective, as real-time anal-
ysis deals with encrypted packets and enforcing decryp-
tion violates enterprise privacy goals. Instead, we draw on
research regarding traffic classification methods given en-
crypted packets. In particular, we refer to website fingerprint-
ing via machine-learning models in developing our process.
Website fingerprinting is a well-researched and imple-

mented process for identifying connections to applications
via traffic flow analysis, application signatures, and classifi-
cation models. Additionally, prior research has found success
in using fingerprinting techniques for traffic classification
even with Tor, demonstrating transference to our goal of
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classification regardless of Tor or VPN usage [11]. These
methods are often tailored to specific use cases, however,
and are thus not entirely applicable to our goal of identifying
any LLM usage - we instead focus on methodologies that
approach general process identification (like streaming or
browsing). Liu et al approach the problem of website finger-
printing over an encrypted network with trained Markov
models and network traffic measurements to achieve impres-
sively high true positive and low false positive rates [7]. We
hope to abstract this workflow of collecting encrypted traffic
data and training classification models to a more generalized
approach of fingerprinting LLM versus non-LLM traffic.

Network packets can be classified into 5-tuples with times-
tamps regardless of encryption, where each 5-tuple contains
src-IP, dst-IP, src-port, dst-port, and protocol. A traffic "flow"
can be identified as all of the packets with identical 5-tuple
characteristics and represents a connection (and all of the cor-
responding communication) between two end-hosts. When
labeled by timestamp, flows can be partitioned according
to a time threshold into "flowlets" that represent more fine-
grained aspects of the connection, like individual messages
as part of a larger conversation between two hosts, resulting
in better insight on flow-level behaviors [8].

Our research is done under the assumption that encrypted
enterprise networks operate with identifiable attributes that
allow users to communicate with the network (and access
the internet). We assume that users authenticate with the
network before being granted access and that this authen-
tication grants an identifiable feature that links users and
their corresponding network traffic. The eduroam network,
for example, uses a Chargeable-User-Identity attribute that
can optionally be used to identify which user is responsible
for traffic flows at the router [1]. This assumption allows us
to further assume that successful classification of encrypted
traffic flows extends to identification of the users responsible
for those flows.
Due to the domain-agnostic nature of the proposed de-

tection method, it is theoretically possible that the method
could be applied to routing obfuscation technologies such as
Virtual Private Networks (VPNs) or Tor Onion Routing (Tor).
In fact, this could be considered a significant utility of such a
method. However, from limited testing on this application it
was determined that the presence of VPNs and Tor substan-
tially complicates the process of detecting LLM usage purely
from packet-level metadata, as both may significantly alter
the exact kind of traffic features the proposed model relies
on. VPNs often aggregate flows and restructure packet sizes,
and Tor deliberately standardizes packets into fixed-length
cells. Prior work has shown strong results detecting specific
application traffic through a VPN [9], as well as characteriz-
ing encrypted traffic based purely on time-related features
[3]. However, these methods involved significantly more

Figure 2: Assumed authentication flow users must fol-
low before interacting with encrypted enterprise net-
works.

complex classification models as well as additional flow fea-
tures not measured by the proposed model, and were unable
to achieve the same accuracy. Tor in particular requires ex-
tensive effort to demystify, and a user could configure their
Tor client to make time-based analysis almost impossible at
the cost of slower traffic speeds [6]. As such, LLM detection
on obfuscated traffic has been omitted from this work. The
primary benefit of the model as described, therefore, is the
ability to detect a wide variety of LLM traffic. Even if a mali-
cious network user hosted an LLM on their own server on a
brand new domain, this would be flagged by the model.

3 METHODS
3.1 Data Collection
Data collection was carried out on two separate networks:
the IPv4 eduroam network at the University of Virginia (mea-
sured in more than one building) and an IPv6 home network.
Upon beginning a Wireshark packet capture, we issued a
"long query" request to the LLM being measured (Gemini,
ChatGPT, or Claude all via browser). The individual collect-
ing data would then identify the IP streaming the response
via theWireshark interface and use that IP to begin a tailored
packet capture via a Python script that collected all traffic go-
ing to and from that IP address. Once this script was running,
the LLMwas queried many more times, and all resulting data
exchange was parsed into a .txt file. Each text file is named
according to the timestamp when it was taken, the IP ad-
dress being captured, and the general query flow that took
place - for example, capture_20251201_203821_2607-6bc0–
10_128_CODINGQUERY.txt represents an IPv6 capture for
address 2607-6bc0–10 with the packets corresponding to a
single coding query from the LLM. Such naming practices
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aimed to identify any potentially anomalous classification
results corresponding with measured behaviors.

3.2 Traffic Representation
The text files captured from LLM and non-LLM usage then
had to be parsed to be used in classification models. Because
the text files only had individual packet captures, it was use-
ful to group these packet captures into flowlets, representing
packets streamed consecutively. The methods for identifying
flowlets are described in further detail in section 4.1.

The captures were parsed into flowlets in a .json file where
each flowlet had a unique 5-tuple key, consisting of the src-
IP, dst-IP, src-port, dst-port, and protocol (all falling in line
with background on flow classification). For each of these
5-tuples, the features gathered included:

• Start Time
• End Time
• Duration
• Packet Count
• Total Bytes
• Inter Packet Time Mean
• Inter Packet Time Standard Deviation
• Packet Size Mean
• Packet Size Standard Deviation
• Inter-Packet Times
• Packet Sizes

Additionally, each of the flowlets contained a field for the
traffic class it was part of (non-LLM or LLM), which served
as the ground truth for the models as well as the name of
the source file, which would help identify the particular
LLM used. Each of the features associated with a particular
flowlet key along with the traffic class was used to train the
classification models.

3.3 Flowlet Classification
Three classifier types — Random Forest, XGBoost, and SVM
—were trained for each of three LLMs (ChatGPT, Gemini, and
Claude), resulting in nine total models. These were the pri-
mary classification approaches evaluated, though additional
models may be trained to gather further results.
The extracted flowlet .json file was used to train models

to classify flowlets associated with LLM usage. Each flowlet
was labeled based on the LLM used during capture (ChatGPT,
Gemini, or Claude) or as non-LLM traffic, using the source
packet capture file described in Section 3.2. After labeling,
the flowlets were input into the three models corresponding
to the LLM label. For example, ChatGPT-labeled flowlets
were used to train and evaluate the three ChatGPT models
against the non-LLM flowlets.
The features used for classification included duration,

packet count, total bytes, inter-packet timemean, inter-packet

time standard deviation, packet size mean, and packet size
standard deviation, similar to the features in the flowlet col-
lection stage. The features were tested for correlation with
the LLM and the results of the correlations and classification
of the models are detailed in section 4.

4 RESULTS
This section details quantitative results from data collection,
feature correlation metrics, and measurements from classifi-
cation models on each use case.

4.1 Data
We collected 10 captures of non-LLM data and 40 captures
of LLM data. Non-LLM data captures had significantly more
flows/flowlets due to capturing all traffic on the end-host
device as opposed to traffic to and from a single IP address.
A more complete representation of the data we collected is
shown when quantified as packets, flows, and flowlets. We
collected 748382 LLM packets and 2058944 non-LLM packets,
which correspond to the total number of lines for each cap-
ture type (each line stores information for one packet). This
then split up into 45,368 LLM flowlets and 121,752 non-LLM
flowlets partitioned by a time threshold of 0.1 seconds. Tables
1 and 2 further represent the distribution of our collected
data.

Table 1: Packet and flowlet dataset summary

Category Count Notes
LLM packets 748,382 packets (rows) from LLM

captures
Non-LLM packets 2,058,944 packets (rows) from non-

LLM captures
LLM flowlets 45,368 derived after flowletiza-

tion
Non-LLM flowlets 121,752 derived after flowletiza-

tion
Time threshold 0.1 s flowlet partition thresh-

old

4.2 Feature Analysis
The correlation of features with the target classification in
each of the models was initially identified through a heatmap,
with key correlations shown for each of the models. In addi-
tion to the correlations, the results of each of the models are
shown in their corresponding subsections.

4.2.1 ChatGPT. The most correlated feature for our Chat-
GPT models was the packet size mean. Features related to
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Table 2: Flowlet distribution by label

Label Flowlets Percentage

ChatGPT 10,764 6.4%
Claude 16,090 9.6%
Gemini 18,514 11.1%
Non-LLM 121,752 72.9%
Other 0 0.0%

inter-packet time, like mean and standard deviation time
between packets, were next highest for feature correlation
with the target. Finally, flowlet duration (time between the
first and last packets of a flowlet) also turned up positively
correlated with the target label (albeit rather low). Figure 3
represents our full findings on feature correlation.

Figure 3: Flowlet feature correlation with target label
for ChatGPT data.

The packet size for ChatGPT flowlets differed substantially
from non-LLM flowlets as seen in Figure 4. Although the
distribution range was similar between 0-1400 bytes, the
ChatGPT flowlets saw a higher concentration of packets near
the 1300 byte mark, as well as a higher concentration near
the 200-400 byte mark. On the other hand, non-LLM packets
tended to stay below 50 bytes each, demonstrating packet
size as an important and distinct feature in classification.

4.2.2 Gemini. The most correlated features for the Gem-
ini flowlets were also related to packet size as well as packet
distribution. Specifically, the most correlated features were
packet size standard deviation, inter-packet standard devi-
ation, and inter-packet time mean. These 3 features each
had a correlation coefficient of between 0.15-0.2 as shown
in comparison to other features in Figure 5. Interestingly,
this is much higher than the average correlation of ChatGPT

Figure 4: ChatGPT packet size mean distribution

features (the most correlated feature, mean packet size, only
having a correlation coefficient of 0.127).

Figure 5: Feature correlation with Gemini flowlets.

Gemini flowlets also have a correlation with packet size
mean, where the distribution of the LLM packet sizes are
different than that of the non-LLM packet sizes (see Figure 6).
The packet sizes of the non-LLM are concentrated 30 bytes
whereas the LLMpacket sizes are concentrated around 50 and
spread between 150 and 600 bytes, and thinner between 600-
1400 bytes. This difference in distribution gives the model a
good feature to identify LLM packets on.

4.2.3 Claude. Inter-packet time mean, inter-packet time
standard deviation, and duration of each of the flowlets
turned out to be most important for the Claude flowlets
as illustrated in Figure 7. The correlations were 0.663, 0.554,
and 0.453 respectively - these coefficients are not only higher
than the ChatGPT features but also the Gemini features.
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Figure 6: Gemini packet size mean distribution

Figure 7: Feature correlation with Claude flowlets.

Figure 8 also shows that the packet size mean is simi-
lar for Claude packets in flowlets when compared to that
of non-LLMs. This is different from ChatGPT and Gemini
packets that saw the packet size differ from non-LLMs. In
contrast, according to Figure 9, the inter-packet time mean
and standard deviation were distinctly different for Claude
packets compared to LLMs. The mean and standard devia-
tion of inter-packet times for non-LLM packets were close to
0.00s, but the Claude packets were concentrated at 0.05s and
distributed towards another concentration at 0.00s for the
mean and concentrated at 0.03s for the standard deviation
distributed towards another concentration towards 0.00s.

4.3 Classification Results
The results of the classification models were promising for
our use-case of identifying unwanted LLM-usage. The LLM/non-
LLM flowlet classification accuracy was high at 98, 88, and

Figure 8: Claude packet size mean distribution

Figure 9: Claude Inter Packet Time Statistics

97 percent respectively for the ChatGPT, Gemini, and Claude
models. Detailed results for each of the models for all LLMs
are shown in Table 3. Additionally, the precision for all clas-
sifiers was high, meaning that most of the flowlets flagged
as LLM were indeed LLM flowlets.

Table 3: Model performance by provider

Provider Model Accuracy Precision Recall F1
ChatGPT Random Forest 0.9792 0.8559 0.5976 0.7038
ChatGPT Svm 0.9730 0.7166 0.5732 0.6369
ChatGPT Xgboost 0.9774 0.8121 0.5884 0.6824
Gemini Random Forest 0.8778 0.9259 0.5651 0.7019
Gemini Svm 0.8587 0.9227 0.4855 0.6362
Gemini Xgboost 0.8818 0.9275 0.5810 0.7144
Claude Random Forest 0.9672 0.9305 0.7522 0.8319
Claude Svm 0.9533 0.8764 0.6607 0.7534
Claude Xgboost 0.9694 0.9504 0.7557 0.8419

Although the accuracy and precision were high for these
classifiers, the recall was lower, coming in at 59 percent, 58
percent, and 75 percent, respectively for ChatGPT, Gemini,
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and Claude. However, we interpret a tradeoff of high accu-
racy for lower recall as a good sign for our intended use case.
This distinction means that most of the flowlets flagged for
LLM usage will, in fact, correspond to LLM flowlets, leading
to a high true positive rate and low false positive rate. This
is beneficial to applications of the models as users will likely
want to know definitively when an LLM is being used - mis-
classifying some flowlets in the process is not detrimental to
the use case.

4.4 General Findings
By exporting SSL secrets and performing packet inspection
in Wireshark and tshark, we successfully decrypted the TLS
traffic to observe the underlying application-layer protocols.
Overall, we noticed that the LLM packet contents varied
tremendously. ChatGPT’s traffic pattern is characterized by
an initial, substantial prepare token payload, followed by a
sequence of redundant “success”:”true” keep-alive packets.
The model’s inference is then delivered via a high-frequency
stream of small payloads, consistent with real-time, token-by-
token generation. In contrast, Gemini’s network signature
exhibited a distinct pattern of packet repetition, suggesting
a different approach to reliability.

5 FRONT-END APPLICATION
We developed a React-based web dashboard that enables net-
work administrators to monitor enterprise network traffic
and interact with our LLM traffic classification system. The
application provides an interface for the end-to-end work-
flow from packet capture to ML inference, integrated with
a FastAPI backend and SQLite database. The dashboard dis-
plays a table of all network captures with metadata, flow
counts, and classification results, with automatic updates
every 5 seconds. Administrators can start new packet cap-
tures through a configuration dialog that supports standard
captures and optional TLS decryption when SSL keys are
provided.
The system automates the processing pipeline with one-

click actions to parse raw captures into flowlets and run
ML classification models, storing all results in a central-
ized database. When TLS decryption is enabled, the system
can identify LLM services from decrypted traffic, providing
ground truth labels that enable real-time validation of model
predictions. The detailed capture view includes interactive
time-series visualizations of traffic patterns and a compari-
son table showing model predictions alongside ground truth
when available, allowing administrators to assess classifica-
tion accuracy.

The purpose of this front-end application is to streamline
the workflow from packet capture through flowlet extrac-
tion to ML inference, enabling near real-time monitoring

of LLM traffic and model validation in enterprise network
environments. Future work will extend this platform to in-
clude dynamic visualizations of simulated enterprise net-
work topologies with multiple routers and devices, similar to
Cisco Packet Tracer, enabling more comprehensive network
traffic analysis and monitoring capabilities.

6 DISCUSSION
6.1 Classification
Our results show that flowlet-level metadata provides a
strong signal for distinguishing LLM traffic from non-LLM
traffic, even under full transport-layer encryption and with-
out reliance on domain knowledge or payload inspection.
The poor recall rate is representative of a deliberately conser-
vative decision boundary that prioritizes minimizing false
positives over exhaustively identifying every LLM-related
flowlet, particularly in the presence of short-lived or weakly
expressive flowlets that resemble background traffic. This
limitation could likely be reduced by including additional
measurements [3] and using a larger, more diverse dataset
for model training. Furthermore, the precision shows that
when the model does flag a flowlet as LLM-generated, it is
highly likely to be correct, which is critical in institutional
settings where erroneous accusations of misuse would be
unacceptable. An ideal model, given our use case of LLM flow
classification via an encrypted network router, would there-
fore emphasize high precision, robustness to heterogeneous
non-LLM traffic, interpretability of feature contributions,
and stability across networks and LLM providers.
While testing on traffic obscured by a VPN was not in-

cluded in this work, it is theoretically possible that our model
can already detect LLM traffic through some VPNs, especially
on a client device with otherwise low network utilization.
Most VPN clients attempt to minimize added latency, even at
the packet level, and may not significantly alter inter-packet
delay [4].

6.2 Weaknesses
As discussed previously, our model is vulnerable to traffic
obfuscation methods such as VPNs or Tor. Prior work has
shown that traffic characterization through these barriers
is possible, but requires significantly more granular flow
metrics [3]. Extending the proposed method to overcome this
challenge would require a much stronger dataset, as well as
significantly larger detection models which come with their
own tradeoffs[5]. The end of this research presents a brief set
of methodologies and results for identifying hidden services
via website fingerprinting techniques, which could serve as
an effective framework for future research on distinguishing
LLM versus non-LLM flows over Tor. A key consideration
here is that this process necessitates new data collected as a

6



Router-Based Detection of LLM Usage CS 7457 Final Paper, December 17, 2025, UVA

Tor client and corresponding model retraining. Due to the
constant sizing Tor packets use, future work should focus on
non-size features when considering Tor traffic identification,
like inter-packet time measurements and non-aggregation
metrics.
Another potential drawback to our methods is data col-

lection methods. All collected traffic was captured at the
end-host, which is not reflective of the intended use-case
as router-based detection. There is consensus among prior
work that mirroring the environment that a targeted client is
using is an effective tactic for appropriately training a classifi-
cation model. Factors like computation and telemetry ability
as well as packet appearance could differ, yet we are fairly
confident that there is transference to a router-based method-
ology, particularly because the end-host traffic collected was
being sent directly to the router in both the eduroam and
home-network setting. We propose collaboration with net-
work administrators in university settings for future work
to more accurately reflect router-based detection.

6.3 Extensibility
There is a significant amount of room for fine-tuning fea-
tures, weights, and model selection to more effectively clas-
sify these flows. Although we only used 3 models, this should
mark the beginning of extensive research potential regard-
ing classification of LLM traffic flows. We also intend for
this general framework to be applicable to identifying other
application-behavior flows via fingerprinting. Rather than
just differentiating between LLM and non-LLM, future work
could investigate diverse application categories like distinc-
tions between different types of content streaming.

7 CONCLUSION
Our project demonstrates an LLM packet fingerprinting
model to detect LLM usage in encrypted enterprise networks
with important applications for cheating detection in schools
or leaked information in classified work settings. We utilized
flowlet-based statistical analysis to identify traffic patterns of
popular LLM websites (ChatGPT, Gemini, and Claude) that
will ideally generalize to many LLM traffic flows, potentially
over VPNs and Tor. After capturing packets and parsing them
into flowlets, we trained and tested Random Forest, SVM, and
XGBoost models, achieving high accuracy but low recall for
distinguishing between LLM traffic and non-LLM network
packets. Finally, we developed a front-end application that a
network administrator could use to monitor real enterprise
network traffic for LLM usage. Overall, our work shows how
enterprises can monitor their network traffic while preserv-
ing privacy and avoiding host-based surveillance through
statistical traffic patterns at the router-level.

8 ETHICS
Privacy is an integral part of encrypted enterprise networks.
Our research upholds user privacy assumptions by not de-
crypting any packets and operating solely on visible at-
tributes of their traffic flow. All training data came from
either home network packet captures or eduroam network
packet captures limited to our personal devices (no sniff-
ing of non-consenting party traffic). Furthermore, this work
presents an alternative to host-based intrusion detection sys-
tems, which are a far more invasive approach to monitoring
user activity. Extensions of this work should consider the
privacy and safety implications of identifying and revealing
student location through router-based detection.

9 ARTIFACTS
Our code and scripts for evaluation can be found at [2].
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